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Viscous oscillatory flow about a circular cylinder 
at small to moderate Strouhal number 
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(Received 15 December 1994 and in revised form 28 July 1995) 

The transient flow field caused by an infinitely long circular cylinder placed in an 
unbounded viscous fluid oscillating in a direction normal to the cylinder axis, which 
is at rest, is considered. The flow is assumed to be started suddenly from rest and 
to remain symmetrical about the direction of motion. The method of solution is 
based on an accurate procedure for integrating the unsteady Navier-Stokes equations 
numerically. The numerical method has been carried out for large values of time for 
both moderate and high Reynolds numbers. The effects of the Reynolds number and 
of the Strouhal number on the laminar symmetric wake evolution are studied and 
compared with previous numerical and experimental results. The time variation of 
the drag coefficients is also presented and compared with an inviscid flow solution for 
the same problem. The comparison between viscous and inviscid flow results shows 
a better agreement for higher values of Reynolds and Strouhal numbers. The mean 
flow for large times is calculated and is found to be in good agreement with previous 
predictions based on boundary-layer theory. 

1. Introduction 
In the present paper we shall study the time-dependent, two-dimensional flow over 

an infinitely long circular cylinder, of radius a, which is placed in an oscillatory flow 
environment. The cylinder is at rest in a flow whose unidirectional oscillations are 
represented by U cos(w t). Here t is the time and o is the frequency of oscillation. 
The motion is assumed to be governed by the Navier-Stokes equations for an 
incompressible fluid and the flow is laminar. We shall take fixed axes with origin at 
the centre of the cylinder, and regard the fluid as oscillating. There are two basic 
parameters in the problem. One is the Reynolds number, defined as R = 2 a U / v ,  
where v is the coefficient of kinematic viscosity of the fluid. The second is the Strouhal 
number ct, defined as a = aw/U,  which characterizes the frequency of oscillation. We 
note that ct can be interpreted as the ratio between the radius of the cylinder and the 
oscillation amplitude. 

The influence of the Strouhal number on the flow patterns at low Reynolds numbers 
has been studied extensively. Schlichting (1932) was the first to calculate the flow field 
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by means of boundary-layer theory. Wang (1965) calculated the total force on a fixed 
cylinder in a slightly viscous fluid oscillating with a high Strouhal number a using 
boundary-layer equations. The cases Ra >> 1, R / a  >> 1 were discussed theoretically by 
Riley (1965) and Stuart (1966). Each author employed a different method of solution: 
Riley developed a series solution analogous to the Blasius series in classical boundary- 
layer theory and Stuart extended a method due to Fettis (1955). Each method leads, 
essentially, to the same results following a similar amount of manipulative work. 
From the usual concepts of boundary-layer theory Stuart showed that, for high 
Reynolds numbers, in addition to the unsteady boundary layer there exists a second 
boundary layer in which the steady streaming decays to zero. Wang (1968) obtained 
analytical solutions for the oscillating cylinder at low Reynolds numbers such that 
Ra >> 1, R/a  << 1 using the method of inner and outer expansions. Stuart (1966) 
first drew attention to the time-averaged thin jet-like flow that is impelled along the 
axis of oscillation when R/a >> 1. Subsequently, Davidson & Riley (1972) visualized 
and made measurements of these jet-like flows. More recently Vasantha & Riley 
(1988) made a very careful numerical study to trace the origin of jets arising in 
flow over a circular cylinder in an oscillatory viscous flow environment. Numerical 
solutions were obtained at both infinite and large but finite Reynolds number when 
M = 4 using both the boundary-layer equations and a viscous-inviscid interactive 
procedure. 

In the present work we study the evolution of the unsteady symmetric wake as a 
function of time and its structure for large values of time at high values of R when 
a ,< rc. Low Strouhal numbers are chosen for the study since the flow structure in 
such cases is characterized by extensive vortex formation, interaction and shedding. 
In general, as a increases the amplitude of free stream oscillations is reduced and 
so is the size of the separated region (see for example Badr, Dennis & Kocabiyik 
1995). This can be correlated with results to be found in other numerical studies and 
with available experimental data. Experimental studies of the oscillatory flows related 
to the present problem have been made by Sarpkaya (1986), Williamson (1985), 
Obasaju, Bearman & Graham (1988), Tatsuno & Bearman (1990). These studies have 
attempted to relate the motion of the vortices to the force acting on the cylinder. 
In addition, the vortex motions are explained in terms of the relevant dimensionless 
parameters: the Reynolds number R and the Keulegan-Carpenter number K C which 
is defined by K C  = UT/ (2a) ,  where T is the period of the oscillation. In sinusoidal 
flow, K C  = n/a; thus K C  is proportional to the flow amplitude. Experimental studies 
show that K C  has a stronger influence on flow patterns at higher R than at lower 
R. 

The most recent numerical studies of this problem have been made by Justesen 
(1991) and Wang & Dalton (1991). Wang & Dalton made a finite-difference study of 
the sinusoidally oscillating flow past a fixed circular cylinder using the vorticity and 
stream function formulation. In their work the Reynolds number ranges from 100 
to 3000 and the Keulegan-Carpenter number ranges from 1 to 12. Justesen (1991) 
presented the results of a numerical study of the two-dimensional oscillating flow 
around a circular cylinder at small and moderate values of the Reynolds number 
and in the range 0 < K C  < 26. The initial conditions in his work are those of 
potential flow theory, i.e. initially the vorticity is zero everywhere. Actually the 
vorticity is singular initially and in the present paper we give a numerical treatment 
of this problem which takes account of the initial flow when boundary-layer theory 
applies, and is also valid at later times, when separation has started and the boundary 
layer thickens. The present numerical method of solution employs boundary-layer 
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variables but without making any approximation to the Navier-Stokes equations. 
It adopts basically the same type of solution structure as that used by Badr & 
Dennis (1985). The accuracy of the numerical scheme was verified by comparing 
the results with those obtained from the analytical solution at small times (see for 
example Badr et al. 1995). The equations are integrated at later times using an 
implicit Crank-Nicolson method of integration. The present numerical method can 
be used to integrate the equations of motion particularly well for high Reynolds 
numbers because of the employment of the boundary-layer coordinates. The fully 
numerical method of solution was carried out for R = lo3 when a = n/4 and n/2 
and R = lo4 when a = n/2. The case in which R = lo3, a = n/4 corresponds to the 
case for which numerical and experimental results have been described by Justesen 
(1991). It is important to note that numerical calculations obtained in our work are 
based on the solution of the full Navier-Stokes equations at both small and large 
times. 

2. Governing equations and method of solution 
At time t = 0, the viscous incompressible fluid surrounding an infinitely long 

circular cylinder suddenly starts to oscillate along an axis of symmetry in a viscous 
incompressible fluid. Unidirectional oscillations of the flow are represented by the 
velocity Ucos(ot), where o is the frequency of the oscillations and t is the time. 
In practice, modified polar coordinates ( 5 , O )  are used, where t = log(r/a), a is the 
radius of the cylinder, and the origin is taken at the centre of the cylinder. 

The motion is two-dimensional and may be described in terms of the usual two 
simultaneous equations satisfied by the stream function and the scalar vorticity. Di- 
mensionless functions y and e are used, related to the dimensional stream function 
and vorticity y* and c' by the equations y* = Uay, i' = -Uc/a.  The dimen- 
sionless radial and transverse components of velocity (u, u )  obtained by dividing the 
corresponding dimensional components by U are then given by 

and the function c is defined by 

The equations governing the motion can be expressed as 

Here, z = Ut/a and R is the Reynolds number defined by R = 2Ua/v, where v is the 
coefficient of kinematic viscosity. 

Equations (2.3) and (2.4) are those considered by Collins & Dennis (1973 a, b )  
in the case of the sudden translation of a circular cylinder without oscillation. In 
the present case oscillation of the flow enters through the Strouhal number a in the 
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boundary conditions, which may be stated as 

(2.6) 
av aw 
a t  ad 

e-5 - -+ cos(az) sin 8, e-5 - -, cos(az) cos 8 as [ + 03. 

The set of conditions (2.5) and (2.6) must be satisfied for all z > 0 and for all 6 such 
that 0 < 8 < n, and moreover, the flow will be assumed to remain symmetrical about 
the direction of motion. Then both functions I+ and [ are anti-symmetrical about 
0 = 0 and 8 = n and, in particular, 

y(4,8) = [(t, 0) = 0 when 8 = 0, 8 = 71. (2.7) 

In the present analysis the calculations are carried out on the basis of the method 
of solution adopted by Collins & Dennis (1973~) in which the functions tp and [ were 
expressed in the form of the series 

m m 

v(t ,@, 7) = c f n ( t ,  7) sin no, 1(5,8,  t) = c g n ( 5 ,  z) sin no (2.8a, b)  

to determine the initial flow in the boundary-layer mainly by analytical methods for 
small values of z. The equations governing the functions in (2.8a,b) can be obtained 
by substitution in (2.3) and (2.4). They have been given by Collins & Dennis (19736) 
and their solution is required in the present case subject to the conditions 

n=l  n=l 

(2.9) 

for all n. As a consequence of the condition (2.6) we must also have that, for all n, 

Finally, the condition (2.6) implies that 

(2.11) 

where a,, is the Kronecker delta symbol defined by 

= 1 if m = n, a,, = 0 if m f n. 

It may now be shown, following Collins & Dennis (1973a), that (2.9) and (2.11) can 
be combined to give further sets of conditions of global type, namely 

(2.12) 

where an,, has the significance in (2.11). 

by the transformation 
In the initial stages of the motion the boundary-layer coordinate x can be introduced 

t = kx, k = 2(22/R)'l2. (2.13) 

This is employed to transform all the appropriate equations together with the scaling 
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of variables 
Gn 
k 

g, = -. (2.14) 

The differential equations and the boundary conditions to be satisfied by the functions 
F, and Gn are given by Collins & Dennis (1973a,b). 

3. Numerical integration procedure 
The expansions in powers of z obtained by Badr et al. (1995) enable properties of 

the flow to be calculated for large R and small z, although nothing precise can be 
said about the region of convergence of the series. In order to calculate the flow for 
any Reynolds number and large enough time, the numerical method of integration 
given by Badr & Dennis (1985) may be used. An implicit method of integration of 
Crank-Nicolson type is used, and a given approximation is obtained by truncating 
the series (2.8~2, b). This is done by setting to zero all functions F,(x,z)  and G,(x,z) 
for n > no, where no is an integer defining the order of truncation. 

The essential details of the procedure have been given by Badr & Dennis (1985). 
Only a few functions F,(x, z) and Gn(x, z) are needed to describe the motion for small 
z in view of the initial structure given by Badr et al. (1995, equation (3.7)). More 
functions are added as integration proceeds and the parameter no actually refers to the 
maximum number of terms used in each of the series (2.8a,b) during the integration. 
The value no = 40 was found to be more than adequate over the quite large time 
range of calculations. An illustration of the effect of varying the number of terms 
used in the series (2.8a,b) will be given when the results are described in the next 
sections. It is also necessary to use a small time step for small z. The reason is that the 
expansions of F,(x, z) and G,(x, z) involve odd powers of k and hence all derivatives 
with respect to z after some stage are singular at z = 0. The problem does not arise 
in the boundary-layer case, where k = 0. For the cases of finite R considered the 
integrations were all started by taking 10 time steps Az = lod4. The time step was 
then increased to AT = for the next 
10. Finally AT = 0.025 was taken for the rest of the solution. The grid size in the 
x-direction was taken as Ax = 0.05. The values of grid sizes were to some extent 
chosen to be comparable with those used by Badr & Dennis (1985), since these were 
found to be satisfactory and were checked carefully. A few comparable checks on 
different grids were made at one or two values of z during the present calculations. 
Moreover, the solutions obtained by fully numerical means are compared with the 
results obtained using expansions in powers of z; these comparisons indicate that 
the solutions are quite accurate. Finally, we may note that the numerical method 
described may be used to continue the solution for increasing z in terms of the 
physical coordinate 5 when the boundary layer thickens. The same methods may be 
used to integrate (2.10) and (2.11) subject to the boundary conditions in terms of 
these coordinates. However in the present paper only cases for which R 2 1000 are 
presented and it is possible to work in terms of the boundary-layer coordinate x over 
the entire range of z considered. The maximum value of x was xh.~ = 8. 

for the next 10 steps and then to AT = 

4. Results 
The variation of drag coefficients with time is calculated both from the viscous 

flow and inviscid flow solutions. It may be noted that the present analysis uses the 
analytical expressions for the surface pressure and drag coefficient obtained by Badr 
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RGURE 1. Comparison of the variation of CD with T at R = lo3,& = n/4: -, numerical; 
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FIGURE 2. Comparison of the variation of CD with T at R = lo4, GI = n/2: -, numerical; 

z 

-, potential flow solution. 

(1994), who considered oscillating inviscid flow over elliptic cylinders. In his work 
analytical expressions are given for the drag coefficient, the lift coefficient, and their 
variation with time. Similar analytical expressions are also given in Badr’s work for 
the special cases of circular cylinders and inclined flat plates in oscillating inviscid 
flows. 

A dimensionless drag coefficient CD is defined by CD = D / p U 2 a  where D is the 
total drag on the cylinder. The viscous drag coefficient can be obtained from 

in which the first term in the integral gives the friction drag coefficient Cf and the 
second the pressure drag coefficient C,, where CD = Cf + C,. The inviscid flow 
properties can be obtained by solving the unsteady Euler equation for the special 
case under consideration in which the free stream velocity changes according to 
u cos ot. 
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FIGURE 3 (a-f). For caption see page 225. 
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FIGURE 3 ( g - l ) .  For caption see page 225. 
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FIGURE 3 (m-q). For caption see page 225. 



224 H. M. Badr, S .  C .  R. Dennis, S .  Kocabiyik and P. Nguyen 
/----- --\ 

(0 

--\ 
---- 

__-- ~- __-A- 

FIGURE 3 ( r - t ) .  For caption see page 225. 

The drag coefficient is deduced from the analysis of Badr (1994) to be 

CD = -rcasinat (4.2) 

for the potential flow. The calculated values of Cf and CD based on the expressions 
(4.1) and (4.2) are plotted in figures 1 and 2 for comparison. These figures show 
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FIGURE 3. Instantaneous streamlines of the flow for R = lo3, ct = 7[/4 at various times: ( a )  z = 16.0, 
( b )  17.0, ( c )  17.5, (d)17.7, ( e )  17.8, cf )  17.9, (g) 18.0, ( h )  18.1, ( i )  18.2, 0') 18.3, (k118.4, ( I )  18.5, (m) 
19.0, (n) 20.0, (0) 21.0, ( p )  21.5, (4) 21.8, ( r )  21.9, (s) 22.0, ( t )  22.1, ( u )  22.2, (0) 22.5, (w) 23.0, (x) 
24.0. 

that the contribution of frictional forces to the total drag coefficient CD is relatively 
small. They also show that the phase difference between the viscous and inviscid flow 
solutions is small at the start of the motion and increases with the increase of time. 
The reason for this is that the flow field away from the cylinder is vortex-free at small 
times. As time increases, vortices are shed away from the cylinder causing changes 
in the flow field structure. Such changes will cause the flow away from the cylinder 



226 H ,  M .  Badr, S .  C .  R, Dennis, S .  Kocabiyik and P. Nguyen 

FIGURE 4. Effect of the number of terms no taken in the series (2.8a,b) on the flow patterns at 
z = 24.0 for R = 103,c( = n/4: ( a )  no = 15, ( b )  no = 25. 

to deviate from the potential flow. Accordingly, one can assume that there are two 
dominating flow fields affecting the boundary-layer region. The first is the potential 
flow field while the second (superimposed on the first) is that resulting from vortical 
motion. In the present problem the second field has negligible effect at the start of 
fluid motion but has increasing influence as time increases. Such a field continues to 
evolve with time until asymptotically approaching a periodic behaviour at large time. 
Figure 2 shows a small difference between the values of Co obtained from viscous 
and inviscid flow solutions. This is expected since the flow oscillations in this case 
exhibit high frequency and a relatively low amplitude. The effect of both factors is 
simply an increase of the inertia effect and a decrease in the size of the separated flow 
region. Both effects will create a pressure field closer to that of potential flow. 

The instantaneous streamline patterns are only plotted for the two cases of R = lo3, 
a = n/4 and R = lo4, a = n/2. Figure 3 shows the time variation of the streamline 
pattern for the first case when z varies from 16.0 to 24.0. This gives the details of the 
flow field structure during the third oscillation after the start of the motion. Figure 
3(a) shows the streamlines when the free stream is moving to the right at maximum 
velocity. The values of y on the streamlines between the cylinder and the detached 
vortex starting from the top of the diagram are y = 2.0, 1.5, 1.0, 0.75, 0.5, 0.4, 0.3, 

-0.3, -0.4, -0.5, -0.75, -1.0, -1.5, -2.0. In the subsequent diagrams the spacing 
of streamlines is very similar. The figure shows two pairs of vortices: one is growing 
in the cylinder wake and the other pair is decaying upstream of the cylinder. One 
can see the growth of the vortex pair in the cylinder wake and the movement of the 
other pair towards the cylinder in figures 3(b)-3(d). Figures 3(e)  and 3 0 ,  at z = 17.80 
and z = 17.90 respectively, show the streamline pattern before the free stream comes 
to complete rest. The same figures also show the formation of another pair of very 
weak vortices resulting mainly from the high fluid deceleration. Figure 3(g)  shows 
the streamlines when the free stream velocity is zero. The large distances between 
streamlines far away from the cylinder reflect the very small velocity there while the 
fluid motion near the cylinder is dominated by vortical motion. Figures 3(h)-(rn) 
show the high rate of decay of the vortices resulting from viscous effects. Figure 
3(n) shows the situation when the free stream is moving to the left at maximum 

0.2, 0.15, 0.1, 0.08, 0.06, 0.04, 0.02, 0.0, -0.02, -0.04, -0.06, -0.08, -0.1, -0.15, -0.2, 
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RGURE 5 (0-j). For caption see next page. 

velocity. The figure is very similar to figure 3(a) (only turned through an angle of 
180" since the free stream has completed one half-cycle of oscillation). Figures 3(o-r) 
give additional details of the flow structure as the free stream decelerates before 
reversing direction at z = 22.0. Figure 3(s), which shows the streamline pattern when 
the free stream velocity is zero, is very similar to figure 3 ( g )  when turned through 
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th) 

- 
FIGURE 5. Instantaneous streamlines of the flow for R = 104,ar = n/2 at various times: ( a )  7 = 8, 

( b )  8.5, ( c )  9.0, ( d )  9.5, ( e )  10.0, (f) 10.5, (g) 11.0, ( h )  11.5, ( i )  12.0. 

an angle of 180". Finally, figure 3(x) ,  which shows the flow field at the end of the 
third complete oscillation (z = 24.0), similar to the situation at the beginning of that 
oscillation (z = 16.0) shown in figure 3(a). The minor differences between figures 3(a) 
and 3(x )  reflect the continuous development of the flow field away from the cylinder 
because of the vortex shedding and interaction. This flow field has not yet become 
periodic and requires a larger number of oscillations before reaching exact variations 
(quasi-state). 

In view of the fairly complicated nature of the flow structure, some tests of the 
adequacy of the number of terms taken in the series (2.8a,b) seems desirable. Some 
checks were therefore made on the solution for R = lo3, CI = 7c/4 at the maximum 
time z = 24 by increasing the number of terms from 15 to 25. The results for the flow 
pattern at this time are compared in figures 4(a) and 4(b) for the cases of no = 15,25. 
The details are seem to be quite comparable at the maximum solution time and they 
also compare well with figure 3(x) .  

The time variation of the streamline pattern for the case of R = lo4, CI = n/2  is 
shown in figure 5(a-i) for selected values of z between z = 8.0 and z = 12.0. The 
chosen interval represents the third complete oscillation following the start of fluid 
motion. Figures 5(a), 5(e) and 5(i) represent the situation at the beginning, middle and 
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FIGURE 6. Comparison with Justesen’s flow visualizations for R = lo3, tl = 7c/4 and ( a )  z = 16.0, 
( b )  r = 17.0, (c) z = 18.0. 



230 

(4 

H .  M.  Badr, S .  C. R. Dennis, S.  Kocabiyik and P. Nguyen 

FIGURE 7. Time-averaged flow field over one period of oscillation for (a) R = 103,0: = n/4 at 
t = 22.0 and ( b )  R = 1 0 3 , ~  = n/2 at z = 81. 

end of the oscillation, respectively. The velocity of the free stream is maximum in each 
of these figures. On the other hand, figures 5(c) and 5(g) represent the times at which 
the free stream velocity is zero. Streamline patterns in figure 5 show that vortices are 
formed in relatively small areas, leaving the rest of the flow vortex-free. The repetitive 
nature of the flow field can be observed from the mirror image resemblances between 
the diagrams for z = 8.00 and z = 10.00; z = 8.50 and z = 10.50; z = 9.00 and 
z = 11.00; and z = 9.50 and z = 11.50. These are given in figures 5(a, e); 5(b,J); 5(c, 
g) and 5(d,  h). This case is like the potential flow case because vortex shedding is 
restricted to a very small region. Figures 5(a) and 5(i) are almost the same, showing 
the periodic variation of the flow field at z = 8.00 and z = 12.00, respectively. 

Figure 6 shows a comparison between the streamline patterns obtained in the 
present study for the case of R = lo3, a = z/4 and those obtained experimentally by 
Justesen (1991). Small deviations between the streamline patterns and experimental 
work are due to the fact that we did not advance the numerical solution far enough 
in time to achieve a periodic flow field. To check this the calculated time-averaged 
flow field over one period of oscillation is plotted in the case of R = lo3, a = 7c/4 
at = 22.00 in figure 7(a). Figure 7(b) shows the mean flow in the case R = lo3, 
a = z/2 at z = 81.00 which is almost steady-state. The streamlines in this figure 
may be compared with the steady-state streamlines of the mean flow according to 
the experiments of Masakazu Tatsuno which are shown by Van Dyke (1982) and 
reproduced here in figure 8. Bearing in mind that the Reynolds number for the 
flow shown by Van Dyke is considerably lower than that of the present case, it 
may be noted that, even so, there is very good qualitative agreement between the 
two diagrams in the boundary-layer region close to the cylinder and that the double 
boundary-layer structure noted by Riley (1965) and Stuart (1966) in these oscillating 
flows is very amply confirmed. 

The support of the Natural Sciences and Engineering Research Council of Canada 
for this investigation is gratefully acknowledged. We also acknowledge the interest 
and support of the King Fahd University of Petroleum and Minerals, Dhahran. 
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FIGURE 8. Steady-state streamlines of the mean flow according to the experiments of 
Masakazu Tatsuno (see Van Dyke 1982, p. 23, figure 31). 
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